'자료'에 해당되는 글 56건
- 2009.02.17 :: 지속가능한 발전과 생명 전공
- 2009.02.06 :: 공교육, 사교육, 가정교육
- 2009.01.06 :: Georgia Tech Professor Walt de Heer holds a proof-of-principle device constructed of graphene
- 2008.12.24 :: [book] Supramolecular Organization and Materials Design
우주와 환경 Universe & Environment
- 우주의 역사
- 글로벌 지속가능한 발전 전략 : 에너지와 기후변화
- 생물다양성 보존과 환경정책
- 우주개발 및 국방과학기술 정책
물질과 생명 Matter & Life
- 과학과 종교
- 과학과 기술의 역사
- 생명의 기원과 인공생명
- 기아 대책과 물질 대사(metabolism)
뇌, 몸, 마음 Brain, Body, & Mind
- 생명 윤리와 의료 윤리
- 뇌 과학 : 기억과 치매
- 링크 : 뉴런과 인터넷
- 동양사상과 한의학
감성과 감각 Emotion & Sensory Science
- 감성 과학과 관능 평가
- 감성을 자극하는 맛의 창조
- 생체 모방 디자인 (bio-mimic design)
- 2050년 세계 : 과학기술과 혁신
'자료 > 교육및강의' 카테고리의 다른 글
기업 인사담당자들, 대학 교육에 바란다 (0) | 2009.03.30 |
---|---|
Push to improve K-12 education takes root in local high school's backyard (0) | 2009.02.23 |
공교육, 사교육, 가정교육 (0) | 2009.02.06 |
서울대 자율전공학부 (0) | 2008.11.25 |
[우리대학 비전을 말한다] 경원대 이길여 총장 (2) | 2008.10.02 |
사람의 회임(懷妊) 기간은 280일로 코끼리보다는 짧지만 포유류 중에서는 꽤 긴 축이다. 더구나 사람은 태어난 뒤에도 또 다른 회임 기간을 보낸다. 바로 교육이다. 초·중·고교를 거쳐 다섯 중 넷꼴로 대학교육까지 받는다. 여기에 각종 직무교육·재교육이 있고 전국 지자체마다 노인대학까지 있으니 가히 평생이 회임 기간이라 할 만하다. 주축은 물론 의무교육을 중심으로 하는 성장기의 공교육이다.
덕성여중 김영숙 교장선생님의 헌신적인 노력(본지 2월 4일자 1면, 5일자 3면)을 보고 나도 감동받았다. 나는 사교육을 추방할 대상으로 보지는 않는다. 공교육을 보완하는 공로가 크다고 생각한다. 그러나 도가 지나쳐 아예 공교육을 대체하는 지경에 이르는 것은 분명히 문제다. ‘사교육 없는 학교’를 만들기 위해 세상에, 오전 7시 출근해 오후 11시 퇴근한다니. 교단에 김 교장 같은 분만 계시다면 누가 학원과외에 목을 매겠는가.
그러나 한편으로 모든 교사가 김 교장 같기를 바라는 마음속에 숨은 얄팍한 이기심을 직시하지 않을 수 없다. 엄연한 교육 주체 중 하나인 학부모는 할 일이 없는가. 나는 학부모가 김 교장이 들이는 노력의 10분의 1이라도 가정교육에 쏟아야 한다고 생각한다. 가정교육이라 해서 거창하게 여길 것은 없다. 세상을 긍정적으로 보는 눈과 남을 배려할 줄 아는 태도, 이 두 가지만 염두에 두면 충분하다고 본다.
한 대학이사장이 전해준 일화다. 아침에 출근하려고 아파트 주차장에 내려갔다. 같은 아파트에 사는 한 남자가 초등학생으로 보이는 아이를 데리고 있었다. 이웃 남자는 새 외제 승용차가 주차된 것을 보고는 “저 자식은 돈이 어디서 나서 새 차로 바꿨나”라고 내뱉었다. 이야기를 전한 이사장은 “아버지의 말을 듣는 순간 아이의 머릿속에는 ‘새 차 사는 것은 나쁜 짓’이라는 인식이 박혀버리지 않았겠는가”라고 개탄했다. 공감한다. 정부가 2013년까지 95억3000만원을 투입해 국민경제교육을 한다는데, 이런 가정교육 아래서는 95억 아니라 9500억원을 쏟아부어도 말짱 헛일이다.
『지도 밖으로 행군하라』의 저자 한비야(월드비전 긴급구호팀장)씨의 아버지는 달랐다. 그는 어린 시절의 한비야 등 자녀들에게 지구의를 선물하면서 “이 좁은 한반도에 머물지 말고 넓디넓은 세계로 나가 활약해라”고 일러주었다. 한비야씨 형제들은 나라 이름, 수도 이름 맞히기 놀이를 즐기면서 꿈을 키웠다.
초등학교 저학년 담당교사들은 “아이의 부모를 만나보면 어쩌면 저렇게 같을까 싶을 정도로 말투, 행동, 예절바름 여부가 꼭 닮아 있다”고 이구동성으로 말한다. 가정교육은 누가 대행해줄 수도 없는 ‘사교육 무풍지대’다. 증오를 심느냐 사랑을 심느냐가 무심코 던진 부모의 한마디로 갈릴 수 있다. 공교육·사교육 논란 속에 가정교육의 중요성은 왠지 퇴색돼 가는 느낌이 들어 하는 말이다.
노재현 논설위원·문화전문기자
중앙일보 2009.1.6
'자료 > 교육및강의' 카테고리의 다른 글
Push to improve K-12 education takes root in local high school's backyard (0) | 2009.02.23 |
---|---|
지속가능한 발전과 생명 전공 (0) | 2009.02.17 |
서울대 자율전공학부 (0) | 2008.11.25 |
[우리대학 비전을 말한다] 경원대 이길여 총장 (2) | 2008.10.02 |
교학상장 (0) | 2008.04.25 |
March 14, 2006
Carbon-Based Electronics: Researchers Develop Foundation for Circuitry and Devices Based on Graphite
Graphite, the material that gives pencils their marking ability, could be the basis for a new class of nanometer-scale electronic devices that have the attractive properties of carbon nanotubes – but could be produced using established microelectronics manufacturing techniques.
![]() |
||||
|
Using thin layers of graphite known as graphene, researchers at the Georgia Institute of Technology in the United States, in collaboration with the Centre National de la Recherche Scientifique (CNRS) in France, have produced proof-of-principle transistors, loop devices and circuitry. Ultimately, the researchers hope to use graphene layers less than 10 atoms thick as the basis for revolutionary electronic systems that would manipulate electrons as waves rather than particles, much like photonic systems control light waves.
“We expect to make devices of a kind that don’t really have an analog in silicon-based electronics, so this is an entirely different way of looking at electronics,” said Walt de Heer, a professor in Georgia Tech’s School of Physics. “Our ultimate goal is integrated electronic structures that work on diffraction of electrons rather than diffusion of electrons. This will allow the production of very small devices with very high efficiencies and low power consumption.”
Supported by the U.S. National Science Foundation and the Intel Corporation, the work was described March 13th at the March Meeting of the American Physical Society. Details of fabrication techniques have been reported in the Journal of Physical Chemistry.
Because carbon nanotubes conduct electricity with virtually no resistance, they have attracted strong interest for use in transistors and other devices. However, serious obstacles must be overcome before nanotube-based devices could be scaled up into high-volume industrial products, including:
- An inability to produce nanotubes of consistent sizes and consistent
electronic properties,
- Difficulty integrating nanotubes into electronic devices using processes
suitable for volume production, and
- High electrical resistance that produces heating and energy loss
at junctions between nanotubes and the metal wires connecting them.
![]() |
||||
|
De Heer, who helped discover many properties of carbon nanotubes over the past decade, believes their primary value has been in calling attention to the useful properties of graphene. Continuous graphene circuitry can be produced using standard microelectronic processing techniques, potentially allowing creation of a “road map” for high-volume graphene electronics manufacturing, he said.
“Nanotubes are simply graphene that has been rolled into a cylindrical shape,” de Heer explained. “Using narrow ribbons of graphene, we can get all the properties of nanotubes because those properties are due to the graphene and the confinement of the electrons, not the nanotube structures.”
De Heer envisions using the graphene electronics for specialized applications, potentially within conventional silicon-based systems. Graphene systems could also be used as the foundation for molecular electronics, helping resolve resistance issues that now affect such systems.
“There is a huge advantage to making a system out of one continuous material, compared to having different materials with different interfaces – and large contract resistances to cause heating at the contacts,” he said.
De Heer and collaborators Claire Berger, Nate Brown, Edward Conrad, Zhenting Dai, Rui Feng, Phillip First, Joanna Hass, Tianbo Li, Xuebin Li, Alexei Marchenkov, James Meindl, Asmerom Ogbazghi, Thomas Orlando, Zhimin Song, Xiaosong Wu of Georgia Tech and Didier Mayou and Cecile Naud of CNRS start with a wafer of silicon carbide, a material made up of silicon and carbon atoms. By heating the wafer in a high vacuum, they drive silicon atoms from the surface, leaving a thin continuous layer of graphene.
Next, they spin-coat onto the surface a photo-resist material of the kind used in established microelectronics techniques. Using optical lithography or electron-beam lithography, they produce patterns on the surface, then use conventional etching processes to remove unwanted graphene.
“We are doing lithography, which is completely familiar to those who work in microelectronics,” said de Heer. “It’s exactly what is done in microelectronics, but with a different material. That is the appeal of this process.”
Using electron beam lithography, they’ve created feature sizes as small as 80 nanometers – on the way toward a goal of 10 nanometers with the help of a new nanolithographer in Georgia Tech’s Microelectronics Research Center. The graphene circuitry demonstrates high electron mobility – up to 25,000 square centimeters per volt-second, showing that electrons move with little scattering. The researchers have also shown electronic coherence at near room temperature, and evidence of quantum interference effects. They expect to see ballistic transport when they make structures small enough.
So far, they have built an all graphene planar field-effect transistor. The side-gated device produces a change in resistance through its channel when voltage is applied to the gate. However, this first device has a substantial current leak, which the team expects to eliminate with minor processing adjustments.
The researchers have also built a working quantum interference device, a ring-shaped structure that would be useful in manipulating electronic waves.
The key to properties of the new circuitry is the width of the ribbons, which confine the electrons in a quantum effect similar to that seen in carbon nanotubes. The width of the ribbon controls the material’s band-gap. Other structures, such as sensing molecules, could be attached to the edges of the ribbons, which are normally passivated by hydrogen atoms.
De Heer and collaborators began working on graphene in 2001 and received support from Intel in 2003. They later received a Nanoscale Interdisciplinary Research Team (NIRT) award from the U.S. National Science Foundation. They have filed one patent for their methods of fabricating graphene circuitry.
De Heer and his colleagues expect to continue improving their materials
and fabrication processes, while producing and testing new structures.
“We have taken the first step of a very long road,” de Heer
said. “Building a new class of electronics based on graphene is
going to be very difficult and require the efforts of many people.”
RESEARCH NEWS
& PUBLICATIONS OFFICE
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA
MEDIA RELATIONS CONTACT: John Toon (404-894-6986); E-mail: (jtoon@gatech.edu).
TECHNICAL CONTACTS: Walt de Heer (404-894-7880); E-mail: (deheer@electra.physics.gatech.edu) or Phil First (404-894-0548); E-mail: (first@physics.gatech.edu).
WRITER: John Toon
'자료 > 연구및기기' 카테고리의 다른 글
RAMAN SPECTROSCOPY: Nanowire on a film makes efficient SERS platform (170) | 2009.03.18 |
---|---|
Gavin Conibeer (1) | 2009.02.23 |
[book] Supramolecular Organization and Materials Design (0) | 2008.12.24 |
ACS Short Course Circuits in (0) | 2008.12.19 |
material matters (0) | 2008.12.03 |
Supramolecular Organization and Materials Design
Edited by W. Jones
University of Cambridge
C. N. R. Rao
Indian Institute of Science, Bangalore
Paperback
(ISBN-13: 9780521087810)
£43.00
Supramolecular Chemistry deals with the design, synthesis and study of molecular structures held together by non-covalent interactions. Structures of this type are ubiquitous in nature and are frequently used as blueprints for the design of synthetic equivalents. This book is intended to demonstrate the seminal importance of supramolecular chemistry and self-organization in the design and synthesis of novel organic materials, inorganic materials and biomaterials. With contributions from leading workers in the field, the book shows how the bottom-up approach of supramolecular chemistry can be used to synthesize not only new materials, but function specific molecular devices as well. This book will be of interest to researchers and graduate students in chemistry, materials science and physics who need a summary of the most recent developments in the field.
• Brings out the role and importance of supramolecular design in materials design and synthesis • Contributions from experts in the field • Highly illustrated with over 200 figures
Contents
1. Assembly and mineralization processes in biomineralization Lia Addadi, Elia Beniash and Steve Weiner; 2. Mesoscale materials synthesis and beyond Ivana Soten and Geoffrey A. Ozin; 3. Towards the rational design of zeolite frameworks Paul Wagner and Mark E. Davis; 4. Mesoscale self-assembly Ned Bowden, Joe Tien, Wilhelm T. S. Huck and George M. Whitesides; 5. Design of amphiphiles for the modulation of catalytic membranous and gelation properties Santanu Bhattacharya; 6. Nanofabrication by the surface sol-gel process and molecular imprinting Izumi Kunitake, Sueng-Woo Lee and Toyoki Ichinose; 7. The hierarchy of open-framework structures in metal phosphates and oxalates Srinivasan Natarajan and C. N. R. Rao; 8. Mesoscale self-assembly of metal nanocrystals into ordered arrays and giant clusters G. U. Kulkarni, P. John Thomas and C. N. R. Rao; 9. Layered double hydroxides as templates for the formations of organic-inorganic supramolecular structures Steven P. Newman and William Jones; 10. Molecular machines Francisco M. Raymo and J. Fraser Stoddart; 11. Some aspects of supramolecular design of organic materials Uday Maitra and R. Balasubramanian; 12. Controlling crystal architecture in molecular solids Andrew D. Bond and William Jones.
Reviews
From the hardback review: ‘Supramolecular Organization and Materials Design edited by William Jones and Chintamani Rao demonstrates the importance of supramolecular chemistry and self-organization in the design and synthesis of novel organic, inorganic, and biomaterials. The bottom-up approach of supramolecular context of the synthesis of new materials and function-specific molecular devices … this book will be of interest to researchers and graduate students of chemistry, materials science, and physics who require a summary of the most recent developments in this field.’ Materials Today
From the hardback review: ‘… an excellent overview of the newer facets of materials chemistry, together with challenges for further research … With more than 1100 references, this book should be compulsory reading for any senior university undergraduate on a materials chemistry course and will be an inspiration for any graduate student beginning research in this area.’ Mike Hursthouse, New Scientist
From the hardback review: ‘… this is an excellent book … and contains a wealth of good illustrations … recommended for everyone whose work is concerned with the latest developments in the science of materials.’ Matthias Epple, Angewandte Chemie
From the hardback review: ‘… this book should be compulsory reading for any senior university undergraduate on a materials chemistry course and will be an inspiration for any graduate student beginning research in this area.’ New Scientist
Contributors
Lia Addadi, Elia Beniash, Steve Weiner, Ivana Soten, Geoffrey A. Ozin, Paul Wagner, Mark E. Davis, Ned Bowden, Joe Tien, Wilhelm T. S. Huck, George M. Whitesides, Santanu Bhattacharya, Izumi Ichinose, Sueng-Woo Lee, Toyoki Kunitake, Srinivasan Natarajan, C. N. R. Rao, G. U. Kulkarni, P. John Thomas, Steven P. Newman, William Jones, Francisco M. Raymo, J. Fraser Stoddart, Uday Maitra, R. Balasubramanian, Andrew D. Bond
'자료 > 연구및기기' 카테고리의 다른 글
Gavin Conibeer (1) | 2009.02.23 |
---|---|
Georgia Tech Professor Walt de Heer holds a proof-of-principle device constructed of graphene (0) | 2009.01.06 |
ACS Short Course Circuits in (0) | 2008.12.19 |
material matters (0) | 2008.12.03 |
여러 대학의 의공학과 (0) | 2008.11.26 |